Extracellular matrix-associated molecules collaborate with ciliary neurotrophic factor to induce type-2 astrocyte development
نویسندگان
چکیده
O-2A progenitor cells give rise to both oligodendrocytes and type-2 astrocytes in vitro. Whereas oligodendrocyte differentiation occurs constitutively, type-2 astrocyte differentiation requires extracellular signals, one of which is thought to be ciliary neurotrophic factor (CNTF). CNTF, however, is insufficient by itself to induce the development of stable type-2 astrocytes. In this report we show the following: (a) that molecules associated with the extracellular matrix (ECM) cooperate with CNTF to induce stable type-2 astrocyte differentiation in serum-free cultures. The combination of CNTF and the ECM-associated molecules thus mimics the effect of FCS, which has been shown previously to induce stable type-2 astrocyte differentiation in vitro. (b) Both the ECM-associated molecules and CNTF act directly on O-2A progenitor cells and can induce them to differentiate prematurely into type-2 astrocytes. (c) ECM-associated molecules also inhibit oligodendrocyte differentiation, even in the absence of CNTF, but this inhibition is not sufficient on its own to induce type-2 astrocyte differentiation. (d) Whereas the effect of ECM on oligodendrocyte differentiation is mimicked by basic fibroblast growth factor (bFGF), the effect of ECM on type-2 astrocyte differentiation is not. (e) The ECM-associated molecules that are responsible for inhibiting oligodendrocyte differentiation and for cooperating with CNTF to induce type-2 astrocyte differentiation are made by non-glial cells in vitro. (f) Molecules that have these activities and bind to ECM are present in the optic nerve at the time type-2 astrocytes are thought to be developing.
منابع مشابه
Type-2 astrocyte development in rat brain cultures is initiated by a CNTF-like protein produced by type-1 astrocytes.
O-2A progenitor cells are bipotential glial precursors that give rise to both oligodendrocytes and type-2 astrocytes on a precise schedule in the rat CNS. Studies in culture suggest that oligodendrocyte differentiation occurs constitutively, while type-2 astrocyte differentiation requires an exogenous inducer such as fetal calf serum. Here we describe a rat brain cell culture system in which ty...
متن کاملDiscovering novel phenotype-selective neurotrophic factors to treat neurodegenerative diseases.
Astrocytes and neurons in the central nervous system (CNS) interact functionally to mediate processes as diverse as neuroprotection, neurogenesis and synaptogenesis. Moreover, the interaction can be homotypic, implying that astrocyte-derived secreted molecules affect their adjacent neurons optimally vs remote neurons. Astrocytes produce neurotrophic and extracellular matrix molecules that affec...
متن کاملNuclear export of OLIG2 in neural stem cells is essential for ciliary neurotrophic factor–induced astrocyte differentiation
Neural stem cell (NSC) differentiation is precisely controlled by a network of transcription factors, which themselves are regulated by extracellular signals (Bertrand, N., D.S. Castro, and F. Guillemot, 2002. Nat. Rev. Neurosci 3:517-530; Shirasaki, R. and S.L. Pfaff, 2002. Annu. Rev. Neurosci 25:251-281). One way that the activity of such transcription factors is controlled is by the regulati...
متن کاملThe trophic effect of ciliary neurotrophic factor on injured masseter muscle in rat
Objective(s): Occlusal trauma is one of the most common forms of oral biting dysfunction. Long-term occlusal trauma could weaken the stomatognathic system; especially damage one’s masticatory muscle. Through using the rat model, this study investigated the trophic effect of ciliary neurotrophic factor (CNTF) on injured masseter muscle. Materials and Methods: Male Wistar rats (n=36) were random...
متن کاملPituitary adenylate cyclase-activating polypeptide induces astrocyte differentiation of precursor cells from developing cerebral cortex.
Ciliary neurotrophic factor and bone morphogenetic proteins induce astrocytogenesis in the developing rat brain by stimulating STAT- and Smad-dependent signaling, respectively. We previously found that stimulation of the cAMP-dependent signaling pathway also triggers differentiation of cerebral cortical precursor cells into astrocytes, providing an additional mechanism to promote astrocyte diff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 111 شماره
صفحات -
تاریخ انتشار 1990